Arabidopsis leucine-rich repeat receptor–like kinase NILR1 is required for induction of innate immunity to parasitic nematodes

نویسندگان

  • Badou Mendy
  • Mary Wanjiku Wang'ombe
  • Zoran S Radakovic
  • Julia Holbein
  • Muhammad Ilyas
  • Divykriti Chopra
  • Nick Holton
  • Cyril Zipfel
  • Florian M W Grundler
  • Shahid Siddique
چکیده

Plant-parasitic nematodes are destructive pests causing losses of billions of dollars annually. An effective plant defence against pathogens relies on the recognition of pathogen-associated molecular patterns (PAMPs) by surface-localised receptors leading to the activation of PAMP-triggered immunity (PTI). Extensive studies have been conducted to characterise the role of PTI in various models of plant-pathogen interactions. However, far less is known about the role of PTI in roots in general and in plant-nematode interactions in particular. Here we show that nematode-derived proteinaceous elicitor/s is/are capable of inducing PTI in Arabidopsis in a manner dependent on the common immune co-receptor BAK1. Consistent with the role played by BAK1, we identified a leucine-rich repeat receptor-like kinase, termed NILR1 that is specifically regulated upon infection by nematodes. We show that NILR1 is essential for PTI responses initiated by nematodes and nilr1 loss-of-function mutants are hypersusceptible to a broad category of nematodes. To our knowledge, NILR1 is the first example of an immune receptor that is involved in induction of basal immunity (PTI) in plants or in animals in response to nematodes. Manipulation of NILR1 will provide new options for nematode control in crop plants in future.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Leucine-Rich Repeat Receptor-Like Kinase BRASSINOSTEROID INSENSITIVE1-ASSOCIATED KINASE1 and the Cytochrome P450 PHYTOALEXIN DEFICIENT3 Contribute to Innate Immunity to Aphids in Arabidopsis1[C][W][OPEN]

The importance of pathogen-associated molecular pattern-triggered immunity (PTI) against microbial pathogens has been recently demonstrated. However, it is currently unclear if this layer of immunity mediated by surface-localized pattern recognition receptors (PRRs) also plays a role in basal resistance to insects, such as aphids. Here, we show that PTI is an important component of plant innate...

متن کامل

Biochemical Analysis of the Role of Leucine-Rich Repeat Receptor-Like Kinases and the Carboxy-Terminus of Receptor Kinases in Regulating Kinase Activity in Arabidopsis thaliana and Brassica oleracea.

Protein post-translational modification by phosphorylation is essential for the activity and stability of proteins in higher plants and underlies their responses to diverse stimuli. There are more than 300 leucine-rich repeat receptor-like kinases (LRR-RLKs), a major group of receptor-like kinases (RLKs) that plays an important role in growth, development, and biotic stress responses in higher ...

متن کامل

The shoot apical meristem regulatory peptide CLV3 does not activate innate immunity.

The Arabidopsis thaliana leucine-rich repeat receptor kinase FLAGELLIN SENSING2 (FLS2) is required for the recognition of bacterial flagellin in innate immunity. Recently, FLS2 was proposed to act as a multispecific receptor recognizing unrelated exogenous and endogenous peptide ligands, including CLAVATA3 (CLV3), a key regulator of shoot meristem stem cell production. Here, we report experimen...

متن کامل

PEPR2 is a second receptor for the Pep1 and Pep2 peptides and contributes to defense responses in Arabidopsis.

Pep1 is a 23-amino acid peptide that enhances resistance to a root pathogen, Pythium irregulare. Pep1 and its homologs (Pep2 to Pep7) are endogenous amplifiers of innate immunity of Arabidopsis thaliana that induce the transcription of defense-related genes and bind to PEPR1, a plasma membrane leucine-rich repeat (LRR) receptor kinase. Here, we identify a plasma membrane LRR receptor kinase, de...

متن کامل

Phosphorylation-Dependent Differential Regulation of Plant Growth, Cell Death, and Innate Immunity by the Regulatory Receptor-Like Kinase BAK1

Plants rely heavily on receptor-like kinases (RLKs) for perception and integration of external and internal stimuli. The Arabidopsis regulatory leucine-rich repeat RLK (LRR-RLK) BAK1 is involved in steroid hormone responses, innate immunity, and cell death control. Here, we describe the differential regulation of three different BAK1-dependent signaling pathways by a novel allele of BAK1, bak1-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2017